

MATHEMATICS HIGHER LEVEL PAPER 2

Thursday 8 May 2008 (morning)

2	h	\sim		rc
_	H	U	u	13

C	andi	date	sessi	on n	umb	er	
0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided.

0

- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 5]
	Determine the first three terms in the expansion of $(1-2x)^5(1+x)^7$ in ascending powers of x.

2. [Maximum mark: 6]

(a) Sketch the curve $f(x) = |1 + 3\sin(2x)|$, for $0 \le x \le \pi$. Write down on the graph the values of the x and y intercepts.

[4 marks]

(b) By adding **one** suitable line to your sketch, find the number of solutions to the equation $\pi f(x) = 4(\pi - x)$.

[2 marks]

.....

.....

3. [Maximum mark:	3.	/Maximum	mark:	6
--------------------------	----	----------	-------	---

A ray of light coming from the point $(-1, 3, 2)$ is travelling in the direction of vector and meets the plane $\pi: x+3y+2z-24=0$.	1 -2
Find the angle that the ray of light makes with the plane.	

4.	[Maximum	mark:	61

A company produces computer microchips, which have a life expectancy that follows a normal distribution with a mean of 90 months and a standard deviation of 3.7 months.

(a)	If a microchip is guaranteed for 84 months find the probability that it will fa	il
	before the guarantee ends.	

[2 marks]

(b)	The probability that a microchip does not fail before the end of the guarantee is
	required to be 99 %. For how many months should it be guaranteed?

[2 marks]

(c)	A rival company produces microchips where the probability that they will fail
	after 84 months is 0.88. Given that the life expectancy also follows a normal
	distribution with standard deviation 3.7 months, find the mean.

[2 marks]

																								•				
												 				-				-					 	-		
												 								-								
												 								-								
												 								-					 			

5. IMMAIIIMIII IIMIN. O	5.	[Maximum	mark:	6
-------------------------	----	----------	-------	---

Find the vector equation of the line of intersection of the three planes represented by the following system of equations.

$$2x-7y+5z = 1$$
$$6x+3y-z = -1$$
$$-14x-23y+13z = 5$$

		 			 			 			 				 					-			 					 	

Find the gradient of the tangent to the curve x^2	$y = \cos(\pi y)$ at the point $(-1, 1)$.

7. [Maximum mark:

A system of equations is given by

$$\cos x + \cos y = 1.2$$

$$\sin x + \sin y = 1.4$$

(a) For each equation express y in terms of x.

[2 marks]

(b) **Hence** solve the system for $0 < x < \pi$, $0 < y < \pi$.

[4 marks]

8.	[Maximum	mark:	61

Only two international airlines fly daily into an airport. UN Air has 70 flights a day and IS Air has 65 flights a day. Passengers flying with UN Air have an 18 % probability of losing their luggage and passengers flying with IS Air have a 23 % probability of losing their luggage. You overhear someone in the airport complain about her luggage being lost.

Find the probability	that she travelled with IS Air.	

9.	[Maximum	mark:	61

By using an appropriate substitution find

$$\int \frac{\tan(\ln y)}{y} \, \mathrm{d}y, \ y > 0.$$

	 																	•			•						 	

10. [Maximum mark:]

Find, in its simplest form, the argument of $(\sin \theta + i(1 - \cos \theta))^2$ where θ is	an acute angle.
	• • • • • • •
	• • • • • • •
	• • • • • • •

[1 mark]

SECTION B

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 13]

The lifts in the office buildings of a small city have occasional breakdowns. The breakdowns at any given time are independent of one another and can be modelled using a Poisson Distribution with mean 0.2 per day.

- Determine the probability that there will be exactly four breakdowns during the month of June (June has 30 days). [3 marks] (b) Determine the probability that there are more than 3 breakdowns during the month of June. [2 marks] Determine the probability that there are no breakdowns during the first five days (c) of June. [2 marks] Find the probability that the first breakdown in June occurs on June 3rd. (d) [3 marks] It costs 1850 Euros to service the lifts when they have breakdowns. Find the (e)
- (f) Determine the probability that there will be no breakdowns in exactly 4 out of the first 5 days in June. [2 marks]

expected cost of servicing lifts for the month of June.

2208-7208

12. [Total mark: 20]

Part A [Maximum mark: 12]

In triangle ABC, BC = a, AC = b, AB = c and [BD] is perpendicular to [AC].

(a) Show that $CD = b - c \cos A$.

[1 mark]

(b) **Hence**, by using Pythagoras' Theorem in the triangle BCD, prove the cosine rule for the triangle ABC.

[4 marks]

(c) If $\triangle ABC = 60^\circ$, use the cosine rule to show that $c = \frac{1}{2}a \pm \sqrt{b^2 - \frac{3}{4}a^2}$. [7 marks]

Part B [Maximum mark: 8]

The above three dimensional diagram shows the points P and Q which are respectively west and south-west of the base R of a vertical flagpole RS on horizontal ground. The angles of elevation of the top S of the flagpole from P and Q are respectively 35° and 40° , and PQ = 20 m.

Determine the height of the flagpole.

13. [Maximum mark: 13]

A family of cubic functions is defined as $f_k(x) = k^2 x^3 - kx^2 + x$, $k \in \mathbb{Z}^+$.

- (a) Express in terms of k
 - (i) $f'_k(x)$ and $f''_k(x)$;
 - (ii) the coordinates of the points of inflexion P_k on the graphs of f_k . [6 marks]
- (b) Show that all P_k lie on a straight line and state its equation. [2 marks]
- (c) Show that for all values of k, the tangents to the graphs of f_k at P_k are parallel, and find the equation of the tangent lines. [5 marks]

14. [Maximum mark: 14]

$$z_1 = (1 + i\sqrt{3})^m$$
 and $z_2 = (1 - i)^n$.

- (a) Find the modulus and argument of z_1 and z_2 in terms of m and n, respectively. [6 marks]
- (b) **Hence**, find the smallest positive integers m and n such that $z_1 = z_2$. [8 marks]